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Introduction
• Inflation is a brief, rapid phase of quasi-exponential expansion in the very early universe,

preceding the hot Big Bang [1], solving key puzzles such as the horizon, flatness, monopole,
and large-scale structure problems by stretching initial inhomogeneities.

• Supported by precision measurements of Cosmic Microwave Background (CMB) tempera-
ture and polarization anisotropies (Planck [2], BICEP/Keck [3]).

• Starobinsky’s R2 model explains inflation via geometric scalaron field and hence, the model
does not require a separate, ad-hoc inflation field to achieve inflation.

In this poster, we · · ·
↪→ Adopted the Palatini formalism to derive modified inflationary observables, notably the

tensor-to-scalar ratio r, showing distinctive phenomenology compared to the metric for-
malism.

↪→ Explored β-exponential inflationary potential in Palatini R2 gravity, motivated by its
emergence from braneworld scenarios and high-energy theories, e.g., string theory, su-
pergravity, its tunable parameter β for observational consistency with Planck [2] and BI-
CEP/Keck [3], and its predictive power for next-generation CMB experiments.

↪→ Examined post-inflation thermal history and reheating dynamics, placing constraints on
the reheat temperature and consistency with Big Bang nucleosynthesis (BBN).

↪→ Presented numerical results for inflationary dynamics and CMB observables.

β−exponential inflation

→ The β-exponential potential is capable of ending inflation by disrupting the slow-roll
regime. As a result, it naturally leads to very small values of the tensor-to-scalar ratio,
r [4].

→ In brane cosmology, identifying the radion (the extra–dimension size field) as the inflaton
naturally yields the β-exponential potential.

In this work, we study the β-exponential potential model, which was first introduced and an-
alyzed in [4] as a generalization of the phenomenological power-law inflation scenario. The
generalized β−exponential potential is given in the Jordan framework by:
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where the deviation from the pure exponential function is controlled by the constant β, while
λ is a dimensionless constant.

Theoretical Framework
We begin by introducing the action in the Jordan framework as:
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After applying a Weyl rescaling and a variation with respect the auxiliary field χ the action can
be written in the Einstenian framework as
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By using equation (3), we can define the potential model in the Einstein frame as follows:

VE(ϕ) =
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) =
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) . (4)

Slow-roll approximation
⋆ The inflationary parameters, namely, the tensor-to-scalar ratio r, the spectral index ns,

and the running of the spectral index dns
d ln k can be expressed as:

ns = 1− 6ϵ + 2η , r = 16ϵ,
dns
d ln k

= 16ϵη − 24ϵ2 − 2κ2 ,
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⋆ However the expression of our potential model in terms of ϕ(ζ) is not straightforward and
this is why we do our analysis in terms of the original scalar field ϕ.

⋆ The number of e-folds N∗ in the slow-roll approximation is given by:
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⋆ ρe = (3/2)V (ϕe) is the energy density at the end of inflation, ρr is the energy density at the
end of reheating, ρ∗ ≈ V (ϕ∗) is the energy density when the scale corresponding to k∗ exits
the horizon, and ρr =

(
π2

30g∗
)
T 4
reh. Here Treh is the reheat temperature; a key parameter

for the physics governing the dynamics after inflation, and ω is the equation of the state
parameter. The choices: ω = 0 and ω = 1

3; have been considered.

Results
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Figure 1: Inflationary predictions (r, ns) for our model, where α varies within the range [107 − 1015]. The purple
contours (dot-dashed and dashed) represent the recent 95%(68%) confidence levels (CL) from BICEP/Keck [3],
while the magenta contours (dot-dashed and dashed) correspond to the prospective constraints from future CMB-
S4 observations [5]. The blue contours (dot-dashed and dashed) represent the achievable 95% and 68% CL upper
limits from LiteBIRD/Planck in the future [6]

Figure 2: Left panel: shows how the ns − N∗ predictions change depending on the α parameter with β = 0.5 and
λ = 0.1 for the instant reheating assumption. Right panel: The α− r plane is shown for the selected parameters of
our model.

Conclusions

↪→ Observational viability: The Palatini R2 β-exponential inflation model aligns tightly with
current CMB data (Planck, BICEP/Keck) and remains testable by next-generation exper-
iments (CMB-S4, LiteBIRD).

↪→ Reheating dynamics matter: Inclusion of reheating temperature (Treh) effects refines pre-
dictions for ns and r. Higher Treh favors non-thermal dark matter and leptogenesis, en-
hancing the model’s compatibility with particle cosmology.

↪→ Effective potential limitations: The β-exponential potential truncates when arguments
turn negative, signaling a breakdown of the effective description. This cutoff must guide
interpretations of early-universe dynamics.

↪→ UV imprints: The consistency between theoretical predictions for the β−exponential in-
flation model and observational data implies that certain theoretical structures originating
from ultraviolet (UV) complete frameworks — such as string theory and quantum gravity
— may manifest observable consequences at cosmo- logical scales

↪→ Unified framework: Our results bridge diverse approaches—connecting braneworld sce-
narios, modified gravity theories, and conventional inflationary dynamics—thereby en-
riching the theoretical landscape of primordial inflation.
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