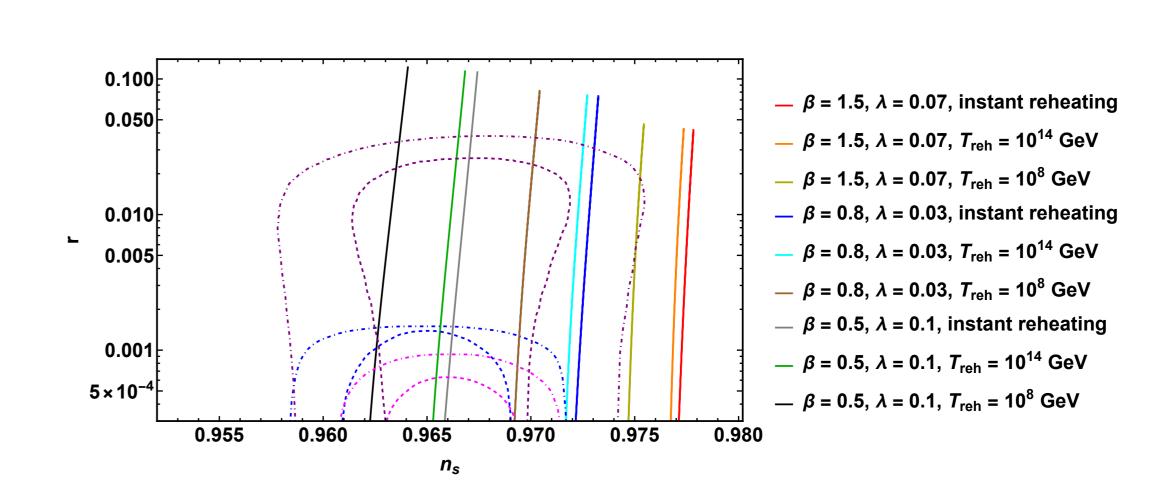
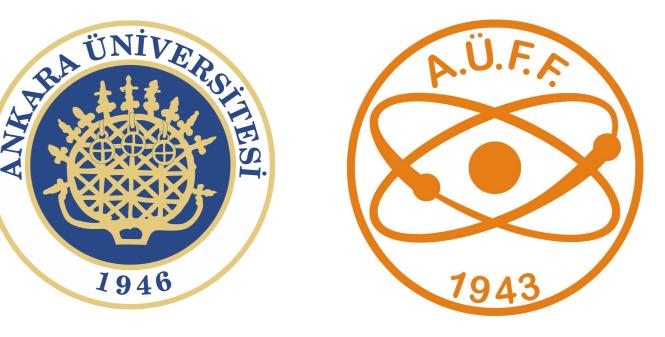
Palatini β -Exponential Inflation with an R^2 Term: Observational Tests

Rafid H. Dejrah^{1,*} and Nilay Bostan^{2,3}


¹Department of Physics, Faculty of Sciences, Ankara University, 06100, Ankara, Türkiye ²Department of Physics and Astronomy, University of Iowa, 52242 Iowa City, IA, USA ³Proton Accelerator Facility, Nuclear Energy Research Institute, TENMAK, 06980, Ankara, Türkiye *Poster presenter. Email: rafid.dejrah@gmail.com


[Ankara University – Poster Day – May, 28 2025]

Introduction

- Inflation is a brief, rapid phase of quasi-exponential expansion in the very early universe, preceding the hot Big Bang [1], solving key puzzles such as the horizon, flatness, monopole, and large-scale structure problems by stretching initial inhomogeneities.
- Supported by precision measurements of Cosmic Microwave Background (CMB) temperature and polarization anisotropies (Planck [2], BICEP/Keck [3]).

Results

• Starobinsky's R² model explains inflation via geometric scalaron field and hence, the model does not require a separate, *ad-hoc inflation field* to achieve inflation.

In this poster, we · · ·

- \hookrightarrow Adopted the Palatini formalism to derive modified inflationary observables, notably the tensor-to-scalar ratio r, showing distinctive phenomenology compared to the metric formalism.
- \hookrightarrow Explored β -exponential inflationary potential in Palatini R^2 gravity, motivated by its emergence from braneworld scenarios and high-energy theories, e.g., *string theory, supergravity*, its tunable parameter β for observational consistency with Planck [2] and BI-CEP/Keck [3], and its predictive power for next-generation CMB experiments.
- → Examined post-inflation thermal history and reheating dynamics, placing constraints on the reheat temperature and consistency with Big Bang nucleosynthesis (BBN).
- \hookrightarrow Presented numerical results for inflationary dynamics and CMB observables.

β -exponential inflation

- \rightarrow The β -exponential potential is capable of ending inflation by disrupting the slow-roll regime. As a result, it naturally leads to very small values of the tensor-to-scalar ratio, r [4].
- \rightarrow In brane cosmology, identifying the radion (the extra–dimension size field) as the inflaton naturally yields the β -exponential potential.

In this work, we study the β -exponential potential model, which was first introduced and analyzed in [4] as a generalization of the phenomenological power-law inflation scenario. The generalized β -exponential potential is given in the Jordan framework by:

$V_J(\phi) = V_0 \exp_{1-\beta} \left(-\lambda\phi\right) = V_0 \left(1 - \lambda\beta \frac{\phi}{M_{\rm D}}\right)^{1/\beta},$

Figure 1: Inflationary predictions (r, n_s) for our model, where α varies within the range $[10^7 - 10^{15}]$. The purple contours (dot-dashed and dashed) represent the recent 95%(68%) confidence levels (CL) from BICEP/Keck [3], while the magenta contours (dot-dashed and dashed) correspond to the prospective constraints from future CMB-S4 observations [5]. The blue contours (dot-dashed and dashed) represent the achievable 95% and 68% CL upper limits from LiteBIRD/Planck in the future [6]

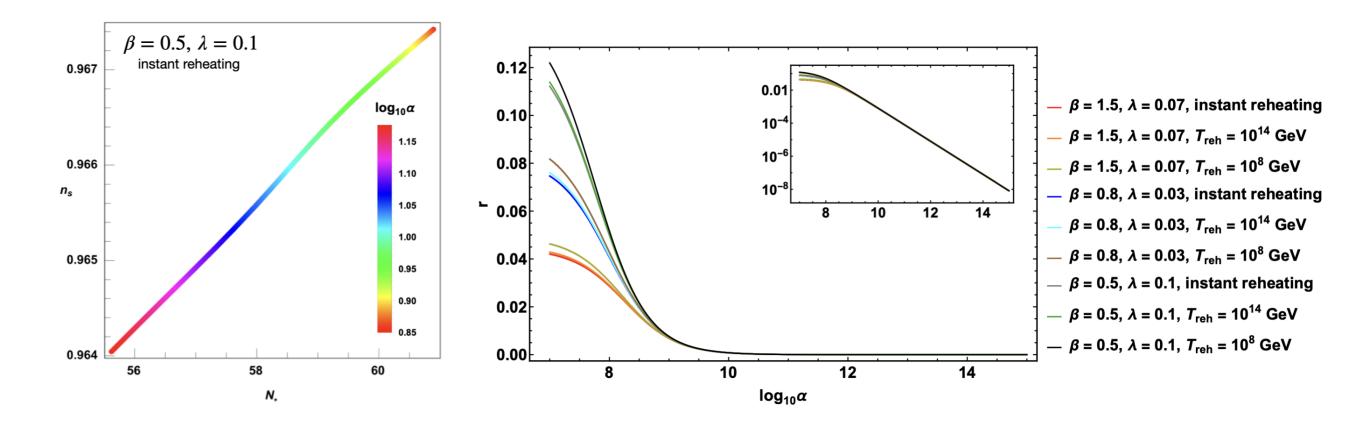


Figure 2: Left panel: shows how the $n_s - N_*$ predictions change depending on the α parameter with $\beta = 0.5$ and $\lambda = 0.1$ for the instant reheating assumption. Right panel: The $\alpha - r$ plane is shown for the selected parameters of our model.

where the deviation from the pure exponential function is controlled by the constant β , while λ is a dimensionless constant.

Theoretical Framework

We begin by introducing the action in the Jordan framework as:

$$S_J = \int d^4x \sqrt{-g} \left(\frac{1}{2}R + \frac{\alpha}{4}R^2 - \frac{1}{2}\nabla^{\mu}\phi\nabla_{\mu}\phi - V_J(\phi) \right) \,. \tag{2}$$

After applying a Weyl rescaling and a variation with respect the auxiliary field χ the action can be written in the Einstenian framework as

$$S_E \simeq \int d^4x \sqrt{-\tilde{g}} \left(\frac{1}{2} \tilde{R} - \frac{1}{2} \frac{\tilde{\nabla}^{\mu} \phi \tilde{\nabla}_{\mu} \phi}{\left(1 + 4\alpha V_J(\phi)\right)} - \frac{V_J(\phi)}{\left(1 + 4\alpha V_J(\phi)\right)} \right) .$$
(3)

By using equation (3), we can define the potential model in the Einstein frame as follows:

$$V_E(\phi) = \frac{V_J(\phi)}{\left(1 + 4\alpha V_J(\phi)\right)} = \frac{V_0 \left(1 - \lambda\beta\phi\right)^{1/\beta}}{\left(1 + 4\alpha V_0 \left(1 - \lambda\beta\phi\right)^{1/\beta}\right)}.$$
(4)

Slow-roll approximation

* The inflationary parameters, namely, the tensor-to-scalar ratio r, the spectral index n_s , and the running of the spectral index $\frac{dn_s}{d \ln k}$ can be expressed as:

$$n_s = 1 - 6\epsilon + 2\eta$$
, $r = 16\epsilon$, $\frac{\mathrm{d}n_s}{\mathrm{d}\ln k} = 16\epsilon\eta - 24\epsilon^2 - 2\kappa^2$,

Conclusions

(1)

- \hookrightarrow Observational viability: The Palatini $R^2 \beta$ -exponential inflation model aligns tightly with current CMB data (Planck, BICEP/Keck) and remains testable by next-generation experiments (CMB-S4, LiteBIRD).
- \hookrightarrow Reheating dynamics matter: Inclusion of reheating temperature (T_{reh}) effects refines predictions for n_s and r. Higher T_{reh} favors non-thermal dark matter and leptogenesis, enhancing the model's compatibility with particle cosmology.
- \hookrightarrow Effective potential limitations: The β -exponential potential truncates when arguments turn negative, signaling a breakdown of the effective description. This cutoff must guide interpretations of early-universe dynamics.
- \hookrightarrow UV imprints: The consistency between theoretical predictions for the β -exponential inflation model and observational data implies that certain theoretical structures originating from ultraviolet (UV) complete frameworks — such as string theory and quantum gravity — may manifest observable consequences at cosmo- logical scales
- → Unified framework: Our results bridge diverse approaches—connecting braneworld scenarios, modified gravity theories, and conventional inflationary dynamics—thereby enriching the theoretical landscape of primordial inflation.

Acknowledgments

I would like to acknowledge and thank Nilay Bostan for her continuous support and guidance in the field. This poster is based on recent publication: [arXiv:2409.10398].

References

where
$$\epsilon = \frac{1}{2} \left(\frac{V_{\zeta}}{V} \right)^2$$
, $\eta = \frac{V_{\zeta\zeta}}{V}$, $\kappa^2 = \frac{V_{\zeta}V_{\zeta\zeta\zeta}}{V^2}$.

* However the expression of our potential model in terms of $\phi(\zeta)$ is not straightforward and this is why we do our analysis in terms of the original scalar field ϕ .

\star The number of e-folds N_* in the slow-roll approximation is given by:

$$N_* = \int_{\zeta_e}^{\zeta_*} \frac{V \mathrm{d}\zeta}{V_{\zeta}} \approx 64.7 + \frac{1}{2} \ln \rho_* - \frac{1}{3(1+\omega_r)} \ln \rho_e + \left(\frac{1}{3(1+\omega_r)} - \frac{1}{4}\right) \ln \rho_r , \qquad (5)$$

* $\rho_e = (3/2)V(\phi_e)$ is the energy density at the end of inflation, ρ_r is the energy density at the end of reheating, $\rho_* \approx V(\phi_*)$ is the energy density when the scale corresponding to k_* exits the horizon, and $\rho_r = \left(\frac{\pi^2}{30}g_*\right)T_{reh}^4$. Here T_{reh} is the reheat temperature; a key parameter for the physics governing the dynamics after inflation, and ω is the equation of the state parameter. The choices: $\omega = 0$ and $\omega = \frac{1}{3}$; have been considered.

- [1] A.H. Guth, Inflationary universe: A possible solution to the horizon and flatness problems, Phys. Rev. D 23 (1981) 347.
- [2] PLANCK collaboration, <u>Planck 2018 results. VI. Cosmological parameters</u>, <u>Astron. Astrophys.</u>
 641 (2020) A6 [1807.06209].

[3] BICEP, KECK collaboration,

Improved Constraints on Primordial Gravitational Waves through the 2018 Observing Season, Phys. Rev. Lett. **127** (2021) 151301 [2110.00483].

[4] J.S. Alcaniz and F.C. Carvalho, <u>Beta-exponential inflation</u>, <u>EPL</u> **79** (2007) 39001 [astro-ph/0612279].

[5] K. Abazajian et al., <u>CMB-S4 Science Case</u>, Reference Design, and Project Plan, 1907.04473.

[6] LITEBIRD collaboration,

Probing Cosmic Inflation with the LiteBIRD Cosmic Microwave Background Polarization Survey, PTEP 2023 (2023) 042F01 [2202.02773].